Limits and Dynamics of Randomly Connected Neuronal Networks
نویسندگان
چکیده
منابع مشابه
Limits and dynamics of randomly connected neuronal networks
Networks of the brain are composed of a very large number of neurons connected through a random graph and interacting after random delays that both depend on the anatomical distance between cells. In order to comprehend the role of these random architectures on the dynamics of such networks, we analyze the mesoscopic and macroscopic limits of networks with random correlated connectivity weights...
متن کاملStructure of attractors in randomly connected networks.
The deterministic dynamics of randomly connected neural networks are studied, where a state of binary neurons evolves according to a discrete-time synchronous update rule. We give theoretical support that the overlap of systems' states between the current and a previous time develops in time according to a Markovian stochastic process in large networks. This Markovian process predicts how often...
متن کاملRandomly Connected Networks Have Short Temporal Memory
The brain is easily able to process and categorize complex time-varying signals. For example, the two sentences, "It is cold in London this time of year" and "It is hot in London this time of year," have different meanings, even though the words hot and cold appear several seconds before the ends of the two sentences. Any network that can tell these sentences apart must therefore have a long te...
متن کاملDynamics of networks of randomly connected excitatory and inhibitory spiking neurons.
Recent advances in the understanding of the dynamics of populations of spiking neurones are reviewed. These studies shed light on how a population of neurones can follow arbitrary variations in input stimuli, how the dynamics of the population depends on the type of noise, and how recurrent connections influence the dynamics. The importance of inhibitory feedback for the generation of irregular...
متن کاملCorrelations between synapses in pairs of neurons slow down dynamics in randomly connected neural networks
Networks of randomly connected neurons are among the most popular models in theoretical neuroscience. The connectivity between neurons in the cortex is however not fully random, the simplest and most prominent deviation from randomness found in experimental data being the overrepresentation of bidirectional connections among pyramidal cells. Using numerical and analytical methods, we investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Applicandae Mathematicae
سال: 2014
ISSN: 0167-8019,1572-9036
DOI: 10.1007/s10440-014-9945-5